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Abstract

The work of de Boor and Fix on spline approximation by quasiinterpolants has had far-reaching
influence in approximation theory since publication of their paper in 1973. In this paper, we further
develop their idea and investigate quasi-projection operators.Wegive sharp estimates in terms ofmod-
uli of smoothness for approximation with scaled shift-invariant spaces by means of quasi-projection
operators. In particular, we provide error analysis for approximation of quasi-projection operators
with Lipschitz spaces. The study of quasi-projection operators has many applications to various areas
related to approximation theory and wavelet analysis.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The work of de Boor and Fix on spline approximation by quasiinterpolants has had far-
reaching influence in approximation theory since publication of their paper[7] in 1973.
ForLp approximation (1�p�∞), de Boor[3] proposed an approximation scheme using
linear projectors induced by dual functionals. See[5] for a comprehensive survey on quasi-
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interpolation schemes. In[6], de Boor et al., usedL2 projectors to give a characterization
for theL2 approximation order of shift-invariant spaces.
The idea of de Boor[3] for Lp approximation was further developed by Jia and Lei

[15] and applied to shift-invariant spaces. On the basis of the work of Lei[20] on Lp

approximation by linear projectors, Lei et al.[21] investigated approximation with scaled
shift-invariant spaces by means of certain integral operators.
In [18,19]Kyriazis investigated the approximation properties of principal shift-invariant

spaces in various function spaces.His approachwasbasedonananalysis of the boundedness
of certain kernel operators on the concerned function spaces. ForL2 approximation, Jetter
and Zhou[11] also employed a projection method to realize the optimal approximation
order as given in[6].
A linear space of functions fromRs to C is calledshift-invariantif it is invariant under

multi-integer translates.For afinite set� = {�1, . . . ,�N }of compactly supported functions
onRs , we useS(�) to denote the shift-invariant space generated by�. In other words, a
functionf lies inS(�) if and only if there exist sequencesbj (j = 1, . . . , N) such that

f =
N∑
j=1

∑
�∈Zs

bj (�)�j (· − �).

For a complex-valued (Lebesgue) measurable functionf on a measurable subsetEof Rs ,
let

‖f ‖p(E) :=
(∫

E

|f (x)|p dx
)1/p

for 1�p < ∞

and let‖f ‖∞(E) denote the essential supremum of|f | onE. WhenE = Rs , we omit the
reference toE. For 1�p�∞, by Lp(R

s) we denote the Banach space of all measurable
functionsf onRs such that‖f ‖p < ∞.

Suppose� = {�1, . . . ,�N } is a finite set of compactly supported functions inLp(R
s)

(1�p�∞). Let S := S(�) ∩ Lp(R
s). It was proved in [12]thatS is closed inLp(R

s).
Forh > 0, by�h we denote the scaling operator given by�hf = f (·/h). LetSh := �h(S).
We are interested in approximation with scaled shift-invariant spaces(Sh)h>0 by means of
quasi-projection operators.
Let �̃1, . . . , �̃N be compactly supported functions inLp̃(R

s), where 1/̃p + 1/p = 1.
LetQ be the linear operator onLp(R

s) defined by

Qf =
N∑
j=1

∑
�∈Zs

〈f, �̃j (· − �)〉�j (· − �), f ∈ Lp(R
s), (1.1)

where

〈f, g〉 :=
∫

Rs
f (x) g(x) dx.
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It is known (see, e.g.,[16, Theorems 2.1 and 3.1]) thatQ is a bounded operator onLp(R
s),

that is,

‖Qf ‖p�C‖f ‖p ∀ f ∈ Lp(R
s),

whereC depends only on� and �̃ = {�̃1, . . . , �̃N }. If the shifts of{�1, . . . ,�N } and
{�̃1, . . . , �̃N } are biorthogonal, then the linear operatorQ is a projector fromLp(R

s) onto
S. However, as far as approximation is concerned,Q is not required to be a projector. Thus,
we callQ aquasi-projection operator. Quasi-projection can be viewed as an extension of
quasi-interpolation.
Forh > 0, letQh = �hQ�1/h. Evidently,

Qhf =
N∑
j=1

∑
�∈Zs

〈f, h−s�̃j (·/h − �)〉�j (·/h − �), f ∈ Lp(R
s).

For a nontrivial functionf ∈ Lp(R
s), we have

‖Qh(�hf )‖p
‖�hf ‖p = ‖�h(Qf )‖p

‖�hf ‖p = ‖Qf ‖p
‖f ‖p .

Hence,‖Qh‖ = ‖Q‖ for all h > 0. Forf ∈ Lp(R
s), Qhf provides an approximation

from Sh = �h(S) to f. The main purpose of this paper is to estimate the errorQhf − f in
Sobolev spaces or Lipschitz spaces ash tends to 0.
Before going further we introduce some notation. LetN0 := N ∪ {0}, whereN denotes

the set of positive integers. An element ofNs
0 is called amulti-index. The length of a multi-

index� = (�1, . . . ,�s) ∈ Ns
0 is given by|�| := �1 + · · · + �s , and the factorial of� is

�! := �1! · · ·�s !. By���wemean�j ��j for all j = 1, . . . , s. For� = (�1, . . . ,�s) ∈ Ns
0

andx = (x1, . . . , xs) ∈ Rs , define

x� := x
�1
1 · · · x�s

s .

The functionx �→ x� (x ∈ Rs) is called a monomial and its (total) degree is|�|. A
polynomial is a linear combination ofmonomials.Thedegreeof a polynomialq = ∑

� c�x
�

is defined to be degq := max{|�| : c� �= 0}. By �k we denote the linear space of all
polynomials of degree at mostk.
For a vectory = (y1, . . . , ys) ∈ Rs , its norm is defined as|y| := max1� j � s |yj |. We

useDy to denote the differential operator given by

Dyf (x) := lim
t→0

f (x + ty) − f (x)

t
, x ∈ Rs .

Moreover, we use∇y to denote the difference operator given by∇yf = f − f (· − y). Let
e1, . . . , es be the unit coordinate vectors inRs . For j = 1, . . . , s, we writeDj for Dej .

For a multi-index� = (�1, . . . ,�s), D
� stands for the differential operatorD

�1
1 · · ·D�s

s .
Similarly, we write∇j for ∇ej and use∇� to denote the difference operator∇�1

1 · · · ∇�s
s .

Forh > 0, we use∇�
h to denote the difference operator∇�1

he1
· · · ∇�s

hes
.
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Fork ∈ N0, let

�k := {(�1, . . . , �s) ∈ Ns
0 : �1 + · · · + �s = k.}. (1.2)

For� = (�1, . . . , �s) ∈ �k andx = (x1, . . . , xs) ∈ Rs we have

(� ·x)k = (�1x1 + · · · + �sxs)k =
∑
�∈�k

��
(
k

�

)
x�.

Since the matrix(��)�,�∈�k
is invertible (see, e.g.,[4]), eachx� (� ∈ �k) is a linear

combination of(� · x)k, � ∈ �k. Note that

D� = �1D1 + · · · + �sDs.

Hence, eachD� (� ∈ �k) is a linear combination ofDk
�, � ∈ �k.

By C(Rs) we denote the space of all continuous functions onRs . For a nonnegative
integerk, we use Ck(Rs) to denote the linear space of those functionsf ∈ C(Rs) for
whichD�f ∈ C(Rs) for all |�|�k. Moreover, byCk

c (R
s) we denote the linear space of

all functions inCk(Rs) with compact support. For 1�p�∞, the Sobolev spaceWk
p(R

s)

consists of all functionsf ∈ Lp(R
s) such that‖f ‖k,p < ∞, where

‖f ‖k,p :=
k∑

j=0

|f |j,p with |f |j,p :=
∑
|�|=j

‖D�f ‖p.

For a nonzero vectoru in Rs , let Iu be the linear operator onCc(R
s) given by

Iug :=
∫ 1

0
g(x − tu) dt, g ∈ Cc(R

s). (1.3)

We claim that

Du(Iug) = ∇ug ∀g ∈ Cc(R
s). (1.4)

Indeed, forx ∈ Rs , we have

Du(Iug)(x) = lim
	→0

Iug(x + 	u) − Iug(x)

	

= lim
	→0

1

	

[∫ 1−	

−	
g(x − tu) du −

∫ 1

0
g(x − tu) du

]

= lim
	→0

[
1

	

∫ 0

−	
g(x − tu) du − 1

	

∫ 1

1−	
g(x − tu) du

]

= g(x) − g(x − u) = (∇ug)(x).

Themodulus of continuityof a functionf in Lp(R
s) is defined by


(f, h)p := sup
|y|�h

∥∥∇yf
∥∥
p
, h�0.
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For a positive integerk, thekthmodulus of smoothnessof f ∈ Lp(R
s) is defined by


k(f, h)p := sup
|y|�h

∥∥∇k
yf

∥∥
p
, h�0.

For 1�p�∞and0< 	�1, the Lipschitz spaceLip(	, Lp(R
s)) consists of all functions

f ∈ Lp(R
s) (f ∈ C(Rs) in the casep = ∞) for which


(f, h)p�Ch	 ∀h > 0,

whereC is a positive constant independent ofh. For	 > 0 we write	 = r + �, wherer is
an integer and 0< ��1. The Lipschitz space Lip(	, Lp(R

s)) consists of those functions
f ∈ Wr

p(R
s) (f ∈ Cr(Rs) in the casep = ∞) for whichD�f ∈ Lip(�, Lp(R

s)) for all
multi-indices� with |�| = r. The semi-norm in Lip(	, Lp) = Lip(	, Lp(R

s)) is given by

|f |Lip(	,Lp) := max|�|=r
sup

y∈Rs\{0}
‖∇yD

�f ‖p
|y|� .

See[9, Chapter 2]for a discussion on Lipschitz spaces.
Section 2 will be devoted to some preliminary results concerning moduli of smoothness.

We will give an explicit construction of linear operators(Ah)h>0 from Lp(R
s) (C(Rs) in

the casep = ∞) to Ck(Rs) such that

‖f − Ahf ‖p�C
k(f, h)p and |Ahf |k,p�C
k(f, h)p/h
k,

whereC is a constant independent ofh, f, andp.
In Section 3, we will investigate approximation properties of the quasi-projection oper-

ators(Qh)h>0. Suppose 0�j < k and�1, . . . ,�N are compactly supported functions in
W

j
p(R

s). LetQ be the quasi-projection operator given in (1.1) such thatQq = q for all
q ∈ �k−1. We will show that there exists a constantC independent ofh, f, andp such that

|f − Qhf |j,p�C
∑
|�|=j


k−j (D
�f, h)p ∀ f ∈ W

j
p(R

s). (1.5)

In Section 4, we will study quasi-projection operators on Lipschitz spaces. Suppose
0< � < 	�k. We will give the following estimate:

|f − Qhf |Lip(�,Lp)�Ch	−�|f |Lip(	,Lp) ∀ f ∈ Lip(	, Lp), (1.6)

whereC is a constant independent ofh, f, andp.
Finally, in Section 5, wewill discuss quasi-projection schemeswith shift-invariant spaces

scaled by powers of an isotropic expansive matrix.
Quasi-projection operators havemany applications to various problems in approximation

theory and wavelet analysis. For instance, in[13] the author applied the quasi-projection
scheme to the investigation of convergence rates of cascade algorithm and confirmed a
conjecture of Ron[23] on this subject. In[10], Han further used such an idea in his study
of vector cascade algorithms and refinable vectors in Sobolev spaces. Quasi-projection
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schemes also play a significant role in the recent work on sampling theory by Aldroubi et
al. [1], and by Blu and Unser[2].

2. Preliminaries

In this section, we review some basic inequalities related to moduli of smoothness.
Let  be an element ofCk

c (R
s) such that

∫
Rs (x) dx = 1. Forh > 0, letA,h be the

linear operator onLp(R
s) (1�p�∞) given by

(A,hf )(x) :=
∫

Rs

(
f − ∇k

uf
)
(x)h(u) du, f ∈ Lp(R

s), x ∈ Rs . (2.1)

whereh := (·/h)/hs . If there is no ambiguity about,A,h will be abbreviated asAh.
When the dimensions = 1 and is a properly normalizedB-spline, these operators were
studied in classical approximation theory under the name “generalized Steklov functions”
(see[22, p. 50; 8, pp. 33–35]). These operators were also used to studyK-functionals (see
[17; 9, Chapter 6]).
We observe that

f − ∇k
uf =

k∑
m=1

(−1)m−1
(
k

m

)
f (· − mu).

Hence,

A,hf (x) =
k∑

m=1

(−1)m−1
(
k

m

) ∫
Rs

f (x − mhu)(u) du, x ∈ Rs . (2.2)

Since ∈ Ck
c (R

s), we have A,hf ∈ Ck(Rs).
Let u ∈ Rs \ {0}. Then the following inequality is valid for 1�p�∞:

‖∇k
uf ‖p�‖Dk

uf ‖p ∀ f ∈ Wk
p(R

s). (2.3)

Indeed, forf ∈ W1
p(R

s), the relation

∇uf (x) =
∫ 1

0
Duf (x − tu) dt

is true for almost everyx ∈ Rs . Applying the Minkowski inequality to the above integral,
we see that (2.3) is true fork = 1. Consequently, (2.3) is verified by induction onk. It
follows immediately from (2.3) that


k(f, h)p�Chk|f |k,p ∀ f ∈ Wk
p(R

s),

whereC is a constant depending only onk ands.
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Lemma 2.1. Suppose0�j < k. If f ∈ W
j
p(R

s) for 1�p < ∞ or f ∈ Cj (Rs) for the
casep = ∞, then

‖f − A,hf ‖p�Chj
∑
|�|=j


k−j (D
�f, h)p, (2.4)

where C is a constant independent ofh and f.

Proof. It follows from (2.1) that

f (x) − A,hf (x) =
∫

Rs
(∇k

uf )(x)h(u) du =
∫

Rs
(∇k

huf )(x)(u) du, x ∈ Rs .

By Minkowski’s inequality for integrals,

‖f − A,hf ‖p�
∫

Rs
‖∇k

huf ‖p|(u)| du.

By (2.3) we have

∥∥∇k
huf

∥∥
p

= ∥∥∇j
hu∇k−j

hu f
∥∥
p
�

∥∥Dj
hu∇k−j

hu f
∥∥
p

= hj
∥∥∇k−j

hu D
j
uf

∥∥
p
,

where the factDhu = hDu has been used to derive the last equality. Since is compactly
supported, there exists a positive constantK such that(u) = 0 for all u /∈ [−K,K]s .
Therefore, for|u|�K, there exists a constantC independent ofh such that

∥∥∇k−j
hu D

j
uf

∥∥
p
�C

∑
|�|=j


k−j (D
�f, h)p.

This completes the proof of (2.4).�

Lemma 2.2. Supposef ∈ Lp(R
s) for 1�p < ∞ or f ∈ C(Rs) for p = ∞. Then

|A,hf |k,p�C
k(f, h)p
/
hk, h > 0, (2.5)

where C is a constant independent of h.

Proof. First, consider the case when has the form

 =
( ∏

�∈�k

I k�

)
� with � ∈ Cc(R

s) and
∫

Rs
�(x) dx = 1,

where�k is given in (1.2) andIu is the linear operator defined in (1.3). It is easily seen that
 ∈ Ck

c (R
s) and

∫
Rs (x) dx = 1. Moreover, taking (1.4) into account, for each� ∈ �k

we haveDk
� = ∇k

�� for some� ∈ Cc(R
s).
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In lightof expression (2.2), inorder toestimate|A,hf |k,p it suffices toestimate‖D�gm‖p
for |�| = k andm = 1, . . . , k, where

gm(x) :=
∫

Rs
f (x − mu)h(u) du

=
∫

Rs
f (x − mhu)(u) du, m = 1, . . . , k. (2.6)

For� ∈ �k, we observe that

Dk
�gm(x)= 1

(mh)k

∫
Rs

f (x − mhu)(Dk
�)(u) du

= 1

(mh)k

∫
Rs

f (x − mhu)
(∇k

��
)
(u) du.

Consequently,

Dk
�gm(x) = 1

(mh)k

∫
Rs

(∇k
�hf

)
(x − mhu)�(u) du.

Applying Minkowski’s inequality for integrals to the above integral, we obtain

∥∥Dk
�gm

∥∥
p
� 1

(mh)k

∫
Rs

∥∥(∇k
�hf

)
(· − mhu)

∥∥
p
|�(u)| du�C1
k(f, h)p

/
hk,

whereC1 is a constant independent ofh. But eachD� (� ∈ �k) is a linear combination of
Dk

�, � ∈ �k. Hence, (2.5) is valid for this case.
Next, consider the general case when ∈ Ck

c (R
s) and

∫
Rs (x) dx = 1. Forh > 0,

let fh := A�,hf , where� := (∏
�∈�k

I k�
)
� with � ∈ Cc(R

s) and
∫

Rs �(x) dx = 1. For
m = 1, . . . , k, let gm be the function given in (2.6). Writegm = vm + wm, where

vm(x) :=
∫

Rs
fh(x − mhu)(u) du and

wm(x) :=
∫

Rs
(f − fh)(x − mhu)(u) du.

For |�| = k, we have

D�vm(x) =
∫

Rs
D�fh(x − mhu)(u) du.

By what has been proved forfh = A�,hf , we obtain

∥∥D�vm
∥∥
p
�

∫
Rs

∥∥D�fh(· − mhu)
∥∥
p

|(u)| du�C2
k(f, h)p/h
k,

whereC2 is a constant independent ofh. Moreover, integration by parts gives

D�wm(x) = 1

(mh)k

∫
Rs
(f − fh)(x − mhu)D�(u) du.

Hence, there exists a constantC3 such that∥∥D�wm

∥∥
p
� 1

(mh)k

∫
Rs

‖(f − fh)(· − mhu)‖p|D�(u)| du�C3
k(f, h)p/h
k,
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where Lemma 2.1 has been used to derive the last estimate. Combining the above estimates
together, we conclude that (2.5) is true for the general case.�

3. Quasi-projection operators

LetQ be the quasi-projection operator given in (1.1). IfQq = q for all q ∈ �k−1, then
� = {�1, . . . ,�N } satisfies the Strang–Fix conditions of orderk (see[24]). Conversely, if
� = {�1, . . . ,�N } satisfies the Strang–Fix conditions of orderk, then there exist compactly
supported functions̃�1, . . . , �̃N in Lp̃(R

s) (1/p̃ + 1/p = 1) such that the corresponding
quasi-projection operator has the property thatQq = q for all q ∈ �k−1. See[14] for a
recent survey on Strang–Fix conditions and their applications to the study of approximation
power of refinable vectors of functions.
In order to establish estimate (1.5) we only need to deal with the case when� consists of

only one function, since the proof for the general case will be analogous. Thus, we consider
the quasi-projection operatorQ given by

Qf =
∑
�∈Zs

〈f, �̃(· − �)〉�(· − �), f ∈ Lp(R
s), (3.1)

where� is a compactly supported function inLp(R
s) (1�p�∞), and�̃ is a compactly

supported function inLp̃(R
s) (1/p̃ + 1/p = 1). It was proved in[13, Lemma 3.2]that

Qq = q for all q ∈ �k−1 if

D�(1− ˆ̃��̂)(0) = 0 ∀ |�| < k,

where�̂ and ˆ̃� denote the Fourier transforms of� and�̃, respectively.
In what follows we shall useC to denote a positive constant independent ofh, f, andp,

whose value may vary from time to time.

Theorem 3.1. Suppose0�j < k and� is a compactly supported function inWj
p(R

s). Let
Q be the quasi-projection operator given in(3.1),and letQh := �hQ�1/h for h > 0. If
Qq = q for all q ∈ �k−1, then

|f − Qhf |j,p�Chk−j |f |k,p ∀ f ∈ Wk
p(R

s). (3.2)

Proof. Let � be a multi-index with|�| = j . In order to estimate‖D�(f −Qhf )‖p, we use
the following decomposition:

D�(f − Qhf )=D�(f − Ahf ) + D�(Ahf − QhAhf )

+D�(QhAhf − Qhf ), (3.3)

whereAh = A,h is the linear operator onLp(R
s) given by (2.1).

The first term on the right-hand side of (3.3) can be easily estimated by noting that
D�(Ahf ) = Ah(D

�f ). Indeed, by Lemma 2.1 we have∥∥D�(f − Ahf )
∥∥
p

= ∥∥D�f − Ah(D
�f )

∥∥
p
�Chk−j |f |k,p.
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In order to estimate the third term on the right-hand side of (3.3), we introduce the linear
operatorQ(�) defined by

Q(�)f =
∑
�∈Zs

〈f, �̃(· − �)〉D��(· − �), f ∈ Lp(R
s). (3.4)

Forh > 0, letQ(�)
h := �hQ(�)�1/h. It is easily seen thatD�(Qhf ) = h−jQ

(�)
h f . Hence,

by Lemma 2.1 we have∥∥D�(QhAhf − Qhf )
∥∥
p

= h−j
∥∥Q(�)

h (Ahf − f )
∥∥
p
�h−j‖Q(�)‖‖Ahf − f ‖p

� Chk−j |f |k,p.

It remains to estimate‖D�(Ahf − QhAhf )‖p. Let fh := Ahf andgh := Qhfh. For
� ∈ Zs , letG�,h := (�+ (−1,1)s)h. We shall estimate|D�(fh − gh)(x)| for x ∈ G�,h. Let
q be the Taylor polynomial offh of degreek − 1 about�h. Write

D�(Ahf − QhAhf ) = D�(fh − q) + D�(q − gh).

Taylor’s theorem gives the following estimate:∣∣D�(fh − q)(x)
∣∣�Chk−j

∑
|�|=k

‖D�fh‖∞(G�,h) ∀x ∈ G�,h. (3.5)

SinceQhq = q, we have

D�(q − gh) = D�(Qh(q − fh)) = h−jQ
(�)
h (q − fh).

But

Q
(�)
h (q − fh)(x) =

∑
�∈Zs

〈q − fh, h
−s�̃(·/h − �)〉D��(x/h − �).

It follows that∣∣Q(�)
h (q − fh)(x)

∣∣� ∑
�∈Zs

|D��(x/h − �)|
∫

Rs
|(q − fh)(y)| |h−s�̃(y/h − �)| dy.

Since� and�̃ are compactly supported, there exists a positive constantK such that

�(x/h − �)�̃(y/h − �) �= 0 �⇒ |y − x|�Kh.

By Taylor’s theorem, we get

|(q − fh)(y)|�Chk
∑
|�|=k

‖D�fh‖∞(G�,h + K[−h, h]s) for |y − x|�Kh.

Moreover,∫
Rs

|h−s�̃(y/h − �)| dy =
∫

Rs
|�̃(y)| dy < ∞.
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Hence, forx ∈ G�,h we have∣∣D�(q − gh)(x)
∣∣�Chk−j |D��|◦(x/h)

∑
|�|=k

‖D�fh‖∞(G�,h + K[−h, h]s), (3.6)

where|D��|◦ denotes the 1-periodization of|D��|:
|D��|◦(x) :=

∑
�∈Zs

|D��(x − �)|, x ∈ Rs .

Combining (3.5) and (3.6) together, we obtain the following estimate forx ∈ G�,h:∣∣D�(fh − gh)(x)
∣∣

�Chk−j
[
1+ |D��|◦(x/h)] ∑

|�|=k

‖D�fh‖∞(G�,h + K[−h, h]s). (3.7)

Sincefh = A,hf , it follows from (2.2) that

D�fh(x) =
k∑

m=1

(−1)m−1
(
k

m

) ∫
Rs

D�f (x − mu)h(u) du.

Applying Hölder’s inequality to the above integrals, we get

‖D�fh‖∞(G�,h + K[−h, h]s)�Ch−s/p‖D�f ‖p(G�,h + K ′[−h, h]s),
whereK ′ is a constant independent ofhandK ′ �K. In particular, for the casep = ∞, this
in connection with (3.7) gives the desired estimate:∥∥D�(fh − gh)

∥∥∞ �Chk−j |f |k,∞.

Similarly, for the case 1�p < ∞, we see that the estimate∣∣D�(fh − gh)(x)
∣∣p

�(Chk−j )p h−s
[
1+ |D��|◦(x/h)]p ∑

|�|=k

‖D�f ‖pp(G�,h + K ′[−h, h]s)

is valid for allx ∈ G�,h. Note that∫
G�,h

h−s
[
1+ |D��|◦(x/h)]p dx

=
∫

(−1,1)s

[
1+ |D��|◦(x)]p dx < ∞ ∀ � ∈ Zs .

It follows that∥∥D�(fh − gh)
∥∥p
p
�

∑
�∈Zs

∫
G�,h

∣∣D�(fh − gh)(x)
∣∣p dx

�(Chk−j )p
∑
|�|=k

∑
�∈Zs

‖D�f ‖pp(G�,h + K ′[−h, h]s).
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But

∑
�∈Zs

‖D�f ‖pp(G�,h + K ′[−h, h]s)�C

∫
Rs

|D�f (y)|p dy.

Therefore,

∥∥D�(fh − gh)
∥∥
p
�Chk−j |f |k,p.

This completes the proof of the theorem.�

For the casej = 0, Theorem 3.1 was already established in[15] and[21]. In fact, in these
two papers, the functions� and�̃ are only required to lie in the spaceL k of all functions
gwith

ess supx∈[−1,1]s
∑
�∈Zs

|g(x + �)|(1+ |x + �|)k < ∞.

Clearly, if there is someε > 0 such that|g(x)|�C(1+ |x|)−k−s−ε for all x ∈ Rs , thenf
lies inL k.
Kyriazis [19] investigated approximation schemes associated with a pair of Sobolev

spaces. Estimate (3.2) was established under the assumption that there exists someε > 0
such that

∣∣D��(x)
∣∣

�C(1+ |x|)−k−s−ε (|�|�j) and
∣∣�̃(x)∣∣�C(1+ |x|)−k−s−ε ∀ x ∈ Rs .

A careful examination of the proof of Theorem 3.1 reveals that estimate (3.2) is still
valid if �, D�� (|�| = j ), and �̃ lie in the spaceL k. Our proof of Theorem 3.1 was
conducted exclusively in the time domain, while the error analysis in[19] was given in
terms of the frequency domain. Each approach has its own merit. Our method can be easily
adapted to approximation associated with spaces of functions on general domains without
the shift-invariant structure.
Simultaneous approximation in derivativeswas also studied byZhao[25]. But hismethod

only works for local shift-invariant spaces. In other words, his method only applies to the
case when� is compactly supported.
We are in a position to give an error estimate for the quasi-projection scheme in terms of

moduli of smoothness.

Theorem 3.2. Let� be a compactly supported function inWj
p(R

s), 0�j < k, and let Q

be the quasi-projection operator given in(3.1)with �̃ being a compactly supported function
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in Lp̃(R
s) (1/p̃ + 1/p = 1). If Qq = q for all q ∈ �k−1, then the following estimate

|f − Qhf |j,p�C
∑
|�|=j


k−j (D
�f, h)p

is valid forf ∈ W
j
p(R

s) in the case1�p < ∞ or f ∈ Cj (Rs) in the casep = ∞.

Proof. Let Ah = A,h be the linear operator onLp(R
s) given in (2.1). In order to prove

the theorem we shall employ the decomposition given in (3.3) with|�| = j . By Lemma 2.1
we have∥∥D�(f − Ahf )

∥∥
p

= ∥∥D�f − Ah(D
�f )

∥∥
p
�C
k−j (D

�f, h)p. (3.8)

Moreover, applying Theorem 3.1 toAhf , we obtain∥∥D�(Ahf − QhAhf )
∥∥
p
�Chk−j |Ahf |k,p = Chk−j

∑
|�|=k

∥∥D�Ahf
∥∥
p
.

For each multi-index� with |�| = k, we can find a multi-index� with ��� and|�| = j .
Hence, by Lemma 2.2 we have

‖D�(Ahf )‖p = ‖D�−�D�(Ahf )‖p
= ∥∥D�−�(Ah(D

�f ))
∥∥
p
�C
k−j (D

�f, h)p/h
k−j .

This shows that∥∥D�(Ahf − QhAhf )
∥∥
p
�C

∑
|�|=j


k−j (D
�f, h)p. (3.9)

In order to estimate‖D�(QhAhf − Qhf )‖p we use the linear operatorQ(�) defined in

(3.4). WithQ(�)
h = �hQ(�)�1/h we get∥∥D�(QhAhf − Qhf )

∥∥
p

= ∥∥h−jQ
(�)
h (Ahf − f )

∥∥
p
�h−j‖Q�‖‖Ahf − f ‖p.

This in connection with (2.4) gives∥∥D�(QhAhf − Qhf )
∥∥
p
�C

∑
|�|=j


k−j (D
�f, h)p. (3.10)

The combination of (3.8)–(3.10) completes the proof of the theorem.�

4. Approximation in Lipschitz spaces

In this section we study quasi-projection operators on Lipschitz spaces. In order to estab-
lish estimate (1.6) for the quasi-projection operator given in (1.1), we only need to consider
the case when� consists of only one function.
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If f ∈ Lip(	, Lp(R
s)) andk is an integer greater than or equal to	, then


k(f, h)p�Ch	|f |Lip(	,Lp) ∀h > 0,

whereC is a positive constant independent ofh andf.

Theorem 4.1. Suppose0< � < 	�k.Let�beacompactly supported function inWj
p(R

s),
where j is the integer such thatj − 1< ��j . Let Q be the quasi-projection operator given
in (3.1)such thatQq = q for all q ∈ �k−1. Then

|f − Qhf |Lip(�,Lp)�Ch	−�|f |Lip(	,Lp) ∀ f ∈ Lip(	, Lp). (4.1)

Proof. Suppose� = r + �, wherer is an integer and 0< ��1. Thenj = r + 1. In order
to establish (4.1), it suffices to show that there exists a constantC independent ofh, y andf
such that

max|�|=r

∥∥∇yD
�(f − Qhf )

∥∥
p
�C|y|�h	−�|f |Lip(	,Lp) ∀y ∈ Rs . (4.2)

Let us first consider the case|y|�h. Sincef ∈ Lip(	, Lp), for |�| = r we haveD�f ∈
Lip(	 − r, Lp). By Theorem 3.2 we get the following estimates:∥∥∇yD

�(f − Qhf )
∥∥
p

�
∥∥D�(f − Qhf )

∥∥
p

+ ∥∥D�(f − Qhf )(· − y)
∥∥
p

� Ch	−r |f |Lip(	,Lp).

But h	−r = h�h	−r−�� |y|�h	−� for |y|�h. Hence, (4.2) is valid for this case.
Next, let us deal with the case|y| < h and	 > j . Suppose|�| = r = j − 1. We observe

that

∇yD
�(f − Qhf )(x) =

∫ 1

0
DyD

�(f − Qhf )(x − ty) dt, x ∈ Rs .

Applying the Minkowski inequality to the above integral, we obtain∥∥∇yD
�(f − Qhf )

∥∥
p
�C|y||f − Qhf |j,p,

whereC is a constant independent ofh andy. This in connection with Theorem 3.2 gives∥∥∇yD
�(f − Qhf )

∥∥
p
�C|y|h	−j |f |Lip(	,Lp)�C|y|�h	−�|f |Lip(	,Lp),

thereby verifying (4.2) for the case	 > j .
Finally, let us investigate the case|y| < h and	�j . For this case, we write

∇yD
�(f − Qhf )= ∇yD

�(f − fh) + ∇yD
�(fh − Qhfh)

+∇yD
�(Qhfh − Qhf ), (4.3)

wherefh := Ahf with Ah := A,h being the linear operator given in (2.1).
For the first term on the right-hand side of (4.3) we have

∇yD
�(f − fh)(x)= ∇y(D

�f − Ah(D
�f ))(x)

=
∫

Rs
∇k
u∇yD

�f (x)h(u) du, x ∈ Rs .
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Applying the Minkowski inequality to the above integral, we obtain∥∥∇yD
�(f − fh)

∥∥
p

�
∫

Rs

∥∥∇k
u∇yD

�f
∥∥
p
|h(u)| du

� 2k
∥∥∇yD

�f
∥∥
p

∫
Rs

|(u)| du.

Sincef ∈ Lip(	, Lp), we have D�f ∈ Lip(	 − r, Lp), and hence

‖∇yD
�f ‖p�C|y|	−r |f |Lip(	,Lp)

for some constantC independent ofh, y andf. Therefore,∥∥∇yD
�(f − fh)

∥∥
p
�C|y|	−r |f |Lip(	,Lp)�C|y|�h	−�|f |Lip(	,Lp). (4.4)

For the second term on the right-hand side of (4.3), by (2.3) we have∥∥∇yD
�(fh − Qhfh)

∥∥
p
�

∥∥DyD
�(fh − Qhfh)

∥∥
p
�C|y||fh − Qhfh|j,p.

Theorem 3.1 tells us

|fh − Qhfh|j,p�Chk−j |fh|k,p.

But f ∈ Lip(	, Lp) implies |fh|k,p�Ch	|f |Lip(	,Lp)/h
k, by Lemma 2.2. Consequently,

∥∥∇yD
�(fh − Qhfh)

∥∥
p
�C|y|h	−j |f |Lip(	,Lp)�C|y|�h	−�|f |Lip(	,Lp). (4.5)

For the third term on the right-hand side of (4.3) we have∥∥∇yD
�(Qhfh − Qhf )

∥∥
p
� |y||Qh(f − fh)|j,p.

For |�| = j , recall thatD�Qh(f − fh) = h−jQ
(�)
h (f − fh), whereQ

(�)
h = �hQ(�)�1/h

withQ(�) being the linear operator defined in (3.4). Hence,

|Qh(f − fh)|j,p =
∑
|�|=j

∥∥D�Qh(f − fh)
∥∥
p
�h−j

∑
|�|=j

‖Q(�)‖‖f − fh‖p.

But f ∈ Lip(	, Lp) implies‖f − fh‖p�Ch	|f |Lip(	,Lp), by Lemma 2.1. Consequently,

∥∥∇yD
�(Qhfh − Qhf )

∥∥
p
�C|y|h	−j |f |Lip(	,Lp)�C|y|�h	−�. (4.6)

Combining estimates (4.4), (4.5), and (4.6) together, we obtain the desired result (4.2) for
the case|y| < h and	�j . The proof of the theorem is complete.�

In [19] Kyriazis investigated quasi-projection schemes for pairs of Triebel–Lizorkin
spaces. But the casep = ∞ was excluded in his study.
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5. Approximation under isotropic scaling

Now let us discuss approximation with shift-invariant spaces scaled by an expansive
matrix. LetM be ans × s integer matrix with�1, . . . , �s being its eigenvalues. If|�i | > 1
for all j = 1, . . . , s, thenM is said to beexpansive.We say thatM is isotropicif M is similar
to the diagonal matrix diag(�1, . . . , �s) with |�1| = · · · = |�s |. Letm := |detM|. Then
m = |�1 · · · �s |. In particular, ifM is isotropic, then|�1| = · · · = |�s | = m1/s. Refinement
equations associated with expansive matrices play a vital role in wavelet analysis.
SupposeM is an isotropic expansive matrix. Let� = {�1, . . . ,�N } be a finite set of

compactly supported functions inLp(R
s), and letS := S(�) ∩ Lp(R

s) (1�p�∞). For
n = 0, 1, . . ., let Sn := {g(Mn ·) : g ∈ S}. Then(Sn)n=0,1,... is a family of shift-invariant
spaces scaled by powers of matrixM. We are interested in the approximation properties of
(Sn)n=0,1,.... Again, quasi-projection operators induce good approximation schemes.
Forn = 0, 1, . . ., letQn be the linear operator onLp(R

s) given by

Qnf =
N∑
j=1

∑
�∈Zs

〈f,mn�̃j (M
n · − �)〉�j (M

n · − �), f ∈ Lp(R
s),

where�̃1, . . . , �̃N are compactly supported functions inLp̃(R
s) (1/p̃ + 1/p = 1). In

particular,Q0 is the quasi-projection operatorQ given in (1.1).

Theorem 5.1. Suppose�1, . . . ,�N are compactly supported functions inW
j
p(R

s),where
0�j < k. If Qq = q for all q ∈ �k−1, then the following estimate

|f − Qnf |j,p�C
∑
|�|=j


k−j (D
�f,m−n/s)p

is valid for f ∈ W
j
p(R

s) in the case1�p < ∞ or f ∈ Cj (Rs) in the casep = ∞.
Furthermore,suppose0< � < 	�k andj − 1< ��j . If Qq = q for all q ∈ �k−1, then

|f − Qnf |Lip(�,Lp)�C(m−n/s)	−� |f |Lip(	,Lp)∀ f ∈ Lip(	, Lp).

This theorem can be proved by following the procedure of the proofs of Theorems 3.1,
3.2, and 4.1. It is not necessary to repeat the details.
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