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Abstract

The work of de Boor and Fix on spline approximation by quasiinterpolants has had far-reaching
influence in approximation theory since publication of their paper in 1973. In this paper, we further
develop their idea and investigate quasi-projection operators. We give sharp estimates in terms of mod-
uli of smoothness for approximation with scaled shift-invariant spaces by means of quasi-projection
operators. In particular, we provide error analysis for approximation of quasi-projection operators
with Lipschitz spaces. The study of quasi-projection operators has many applications to various areas
related to approximation theory and wavelet analysis.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The work of de Boor and Fix on spline approximation by quasiinterpolants has had far-
reaching influence in approximation theory since publication of their pgfjen 1973.
For L, approximation (X p <oo), de Boor[3] proposed an approximation scheme using
linear projectors induced by dual functionals. $8€or a comprehensive survey on quasi-
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interpolation schemes. [6], de Boor et al., used.,» projectors to give a characterization
for the L, approximation order of shift-invariant spaces.

The idea of de Boof3] for L, approximation was further developed by Jia and Lei
[15] and applied to shift-invariant spaces. On the basis of the work of2@ion L,
approximation by linear projectors, Lei et f21] investigated approximation with scaled
shift-invariant spaces by means of certain integral operators.

In [18,19]Kyriazis investigated the approximation properties of principal shift-invariant
spaces in various function spaces. His approach was based on an analysis of the boundedness
of certain kernel operators on the concerned function spaceg.Fapproximation, Jetter
and Zhou[11] also employed a projection method to realize the optimal approximation
order as given if6].

A linear space of functions frofR® to C is calledshift-invariantif it is invariant under
multi-integer translates. For afinite $et= {¢4, . . ., ¢ 5} Of compactly supported functions
on R*, we useS(®) to denote the shift-invariant space generatedbyn other words, a
functionf lies in S(@) if and only if there exist sequenceés (j = 1, ..., N) such that

N
F=Y) bj@¢;(-—aw.

j=1 07’

For a complex-valued (Lebesgue) measurable funétiora measurable subgeof R®,
let

1/p
11y (E) = (/E If(x)lpdx> for 1< p < oo

and let| f || (E) denote the essential supremum 6f on E. WhenE = R*, we omit the
reference tde. For 1< p <oo, by L,(R®) we denote the Banach space of all measurable
functionsf on R* such that| f ||, < oo.

Supposel = {¢4, ..., ¢y} is a finite set of compactly supported functionslip(R*)
(1< p<o0). Let S := S(@) N L,(R%). It was proved in [12}hatSis closed inL ,(R®).
Forh > 0, bys;, we denote the scaling operator givendyyf = f(-/h). LetS;, := a,(S).
We are interested in approximation with scaled shift-invariant spe8s. o by means of
quasi-projection operators.

Let ¢y, ..., ¢y be compactly supported functions iry(R*), where 15 + 1/p = 1.
Let Q be the linear operator ah, (R") defined by

N
Qf =Y Y (fi ;=) ;(—0), feL,®R), (1.2)

j=loeZ®

where

)= [ FE@
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It is known (see, e.g[16, Theorems 2.1 and 3.1]) th@tis a bounded operator dn, (R®),
that is,

12flIp<Clflp Y feLpR),

whereC depends only o and ¢ = {551» ey (ESN}. If the shifts of{¢4, ..., ¢} and
{(2)1, ce &SN} are biorthogonal, then the linear operafis a projector fromL ,(R*) onto
S. However, as far as approximation is concer@eig,not required to be a projector. Thus,
we callQ aquasi-projection operator. Quasi-projection can be viewed as an extension of
guasi-interpolation.

Forh > 0, let Q5 = 01, Qo1,5. Evidently,

N
0nf =Y S (P /h =) i h—,  feLy®R).

j=lacZ*
For a nontrivial functionf € L,(R’), we have

19r(an)llp _ lNlon(@POllp _ 19F1lp

lonflp, — loufl, — IfIl,

Hence,|| Qx| = ||Q]l for all 2 > 0. For f € L,(R%), O, f provides an approximation
from S, = 0;,(S) tof. The main purpose of this paper is to estimate the e@py — f in
Sobolev spaces or Lipschitz spacesh&snds to 0.

Before going further we introduce some notation. Ngt:= N U {0}, whereN denotes
the set of positive integers. An elementhdf is called anulti-index. The length of a multi-
indexu = (uq, ..., 1) € Ny is given by|u| := uq + - - - + p, and the factorial of: is
wo= gl gl Byv< uwe meary; SHj forallj =1,...,s.Foru= (uq, ..., 1) € Nj
andx = (x1,...,x;) € R*, define

xt = xflu-xéls.
The functionx — x* (x € R’) is called a monomial and its (total) degree|ig. A
polynomial is alinear combination of monomials. The degree ofa polynqrﬁia[jﬂ cpxt
is defined to be deg := max{|u| : ¢, # 0}. By II; we denote the linear space of all
polynomials of degree at molkt
For a vectory = (y1,...,ys) € R’, its norm is defined ay| := max < j < |y;|. We
useD, to denote the differential operator given by

fx+1ty) — fx)
; ,

Dy f(x):= llino x € R’

Moreover, we us&, to denote the difference operator givenWyf = f — f(- — y). Let
e1, ..., es be the unit coordinate vectors ®'. For j = 1,...,s, we write D; for D,;.

For a multi-indexu = (iy, ..., ), D* stands for the differential operat@n* - - - D*.
Similarly, we writeV; for V,; and usev* to denote the difference operatﬁéifl v/l

Forh > 0, we usev,' to denote the difference operafgf?’ --- v, .
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Fork € Ny, let
A =A{(o1, ..., 05) € Ny rog + -+ + oy = k.J. (1.2)
Foro = (a1, ...,05) € A andx = (x1, ..., x;) € R® we have
k
(OC'X)k = (otpx1 4+ -+ -+ O(st)k = Z (x/“‘( )x‘u.
u

ey

Since the matrix(e*),, 4e4, is invertible (see, e.gl4]), eachx” (u € 4) is a linear
combination of(a - x)¥, o € 4. Note that

Dy, =o01D1 4+ -+ + o Dy.

Hence, eactD* (u € 4y) is a linear combination ab¥, « € 4y.

By C(R*) we denote the space of all continuous functionsifon For a nonnegative
integerk, we use ¢(R*) to denote the linear space of those functighs C(R®) for
which D* f e C(R®) for all |u|<k. Moreover, byCi‘(IRS) we denote the linear space of
all functions inC¥(R*) with compact support. Ford p < oo, the Sobolev spacWﬁ(lRiS)
consists of all functiong € L,(R*) such that|| f|Ix,, < oo, where

k
Iy ==Y 11y With [flj,:= Y ID £l

Jj=0 lul=j

For a nonzero vectarin R®, let I, be the linear operator afi.(R*) given by

1
lI,g = / glx —tu)dr, ge C.(R. (1.3)
0
We claim that
D,(I,g) =V,g Vge C.(R%). (1.4)

Indeed, forx € R*, we have

Lug(x + Au) — I, g(x)
A

) 1 1-4 1
=/|1ILHOI[/_2 g(x —tu)du —/Og(x —tu)du]

1 [0 1t
=/|1iLn0 7/_)~g(x—tu)du—E/l_ig(x—tu)du

=g8(x) —glx —u) = (Vug)(x).

Themodulus of continuityf a functionf in L ,(R") is defined by

D, (I,8)(x) = JILIEPO

h>0.

o(f, h), := sup ||Vyf|p,
yI<h
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For a positive integek, thekth modulus of smoothnes$ f € L, (R®) is defined by

, h>0.
P

e (f.h)p = sup| V|
yI<h
For 1< p <ocand 0< A< 1, the Lipschitz space Lig( L ,(R*)) consists of all functions
feLy(R) (f € C(R%) inthe case = oo) for which

o(f,h), <Ch* Yh >0,

whereC is a positive constant independentofFor 4 > 0 we writed = r + 5, wherer is
an integer and G< < 1. The Lipschitz space Lig( L ,(R*)) consists of those functions
f e WiRY) (f € C"(RY) inthe casep = oo) for which D* f e Lip(, L, (R")) for all
multi-indicesy with |u| = r. The semi-normin Lip, L) = Lip(4, L,(R")) is given by

V,D"
[ flLipci,L,) = max  sup IVyD fllp
V= yere\ (0} ly|"

See[9, Chapter 2Jor a discussion on Lipschitz spaces.

Section 2 will be devoted to some preliminary results concerning moduli of smoothness.
We will give an explicit construction of linear operatae$;,),,~o from L ,(R*) (C(R®) in
the case = 00) to C*(R*) such that

If — Anfll, <Cox(f,h), and |Ayflkp,<Cox(f,h),/h,

whereC is a constant independentloff, andp.

In Section 3, we will investigate approximation properties of the quasi-projection oper-
ators(Qp)n-0. Suppose & j < k and¢4, ..., ¢ are compactly supported functions in
W},(RS). Let Q be the quasi-projection operator given in (1.1) such that= ¢ for all
q € II;—1. We will show that there exists a const&hindependent off, f, andp such that

|f = Onflip<C Y an—j(D'f.h), Y feWhER). (1.5)
vl=j

In Section 4, we will study quasi-projection operators on Lipschitz spaces. Suppose
0 < 1t < A<k. We will give the following estimate:

|f — OnflLipx.L,) gCh)'_T|f|Lip(/l,L,,) vV f elip(/, L), (1.6)

whereC is a constant independent foff, andp.

Finally, in Section 5, we will discuss quasi-projection schemes with shift-invariant spaces
scaled by powers of an isotropic expansive matrix.

Quasi-projection operators have many applications to various problems in approximation
theory and wavelet analysis. For instance[li8] the author applied the quasi-projection
scheme to the investigation of convergence rates of cascade algorithm and confirmed a
conjecture of Roii23] on this subject. I110], Han further used such an idea in his study
of vector cascade algorithms and refinable vectors in Sobolev spaces. Quasi-projection
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schemes also play a significant role in the recent work on sampling theory by Aldroubi et
al.[1], and by Blu and Uns€].

2. Preliminaries

In this section, we review some basic inequalities related to moduli of smoothness.
Letys be an element oﬁ(’f([RE‘V) such thatfRs Yy(x)dx = 1. Forh > 0, letAy, , be the
linear operator oiL , (R*) (1< p <oo) given by

Apsh = [ (F=iN@m@de feL,®) xR, @1
wherey;, ;= (-/h)/h*. If there is no ambiguity about, A, ; will be abbreviated ad,.
When the dimension = 1 andy is a properly normalize®-spline, these operators were
studied in classical approximation theory under the name “generalized Steklov functions”
(see[22, p. 50; 8, pp. 33—35]). These operators were also used to Kifidiyctionals (see
[17; 9, Chapter 6]).

We observe that

£ k
f=Vaf = Z(—l)'"—l<m).f<~ — mu).

m=1
Hence,
L k
Ay f(x) = Z(—l)m—l(m>/ fx —mhu)y(u)du, x e R (2.2)
m=1 iy

Sincey € CX(R®), we have 4, , f € CH(R®).
Letu € R® \ {0}. Then the following inequality is valid for & p < oc:

IVEfI,<IDEfll, ¥ feWhR). (2.3)

Indeed, forf e W[}(R"), the relation

1
Vi f(x) = / Dy f(x — tu) dt
0

is true for almost every € R*. Applying the Minkowski inequality to the above integral,
we see that (2.3) is true fdr = 1. Consequently, (2.3) is verified by induction knlt
follows immediately from (2.3) that

O (f; 1)y <Ch¥| flip V[ € WHR),

whereC is a constant depending only &rands.
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Lemma 2.1. Suppos®<j < k. If f € Wl’;(RS) for 1<p < oo or f e C/(R®) for the
casep = oo, then

If = Aynfllp<Ch! Y an—j(D'f. h)p, (2.4)
vl=j

where C is a constant independent:odind f.
Proof. It follows from (2.1) that
F@ = At = [ @Epwmwdn= [ &k peobwad e R,

By Minkowski’s inequality for integrals,

If—Aypnfllp< /RS IV £l p )| du.
By (2.3) we have

IVE AL, = 19050 £, <100V £1, = 11V, Dilf |

hu

[?’

where the facD;, = hD, has been used to derive the last equality. Sinée compactly
supported, there exists a positive constarguch thaty(u) = 0 for allu ¢ [—K, K]°.
Therefore, fofu| < K, there exists a consta@tindependent ol such that

IVEDif],<C S ony (D £k,

VI=j

This completes the proof of (2.4). [

Lemma 2.2. Supposef € L,(R*) for1<p < ooor f € C(RY) for p = oo. Then

|Ay i flip SCox(f.h)p [R5, h >0, (2.5)

where C is a constant independent of h.

Proof. First, consider the case whenhas the form

_ k - s _
w_(]_[ Ia)p with p e C.(R°) and /Rxp(x)dx_l,

MGAk

whereA, is given in (1.2) and,, is the linear operator defined in (1.3). It is easily seen that
Y € CK(R') and [ (x) dx = 1. Moreover, taking (1.4) into account, for eaete 4
we have DXy = VEy, for somey, € C.(R®).
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Inlightof expression (2.2), inorderto estimatg, ;, f |« it suffices to estimatgD g, ||,
for |y =kandm =1, ..., k, where

gm(x):= /RS fx —mu)y, () du

= / f&x —mhu)y(u)du, m=1,... k. (2.6)
RS
Foro e Ay, we observe that

Dl gy(x) = / f(x — mhu)(DAy) (u) du

(m h)k

_ k
(mh)k / f(x —mhu) (V /s )(u) du.
Consequently,

Djgm(x) = /RS (V];hf)(x — mhu)y,(u) du.

1
(mh)*
Applying Minkowski’s inequality for integrals to the above integral, we obtain

1
k k k
D5l < o [ (T80 =m0l < Caon £y, /1

where(C1 is a constant independentiof But eachD* (1 € 4y) is a linear combination of
D’;, o € Ag. Hence, (2.5) is valid for this case.

Next, consider the general case whiere Cf([RRS) andes Y(x)dx = 1. Forh > 0,
let f := Agnf, whered := ([Teu, 15)p With p € C(R%) and [ s p(x) dx = 1. For
m=1,...,k, letg, be the function given in (2.6). Writg,, = v,, + w,,, where

U (X) 1= / fn(x — mhu)y(u)du and
RS

W (X) 1= /Rx(f — fn) (& — mhu)p(u) du.

For|u| = k, we have

D", (x) = /R“ D" fr(x — mhu)y(u) du.
By what has been proved fgf, = Ay, f, we obtain

| Do |, < / - | D* fir(- = mhu) ||, ()| du < Coon(f, h)p/
whereC; is a constant independentlof Moreover, integration by parts gives

DFwy, (x) = ﬁ /Rj(f — fu)(x — mhu) D"y (u) du.

Hence, there exists a constant such that

1
[ D" wnll, < o / NG = i = mhu) | DM @) du < Caoo(f. )/ 1
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where Lemma 2.1 has been used to derive the last estimate. Combining the above estimates
together, we conclude that (2.5) is true for the general casel

3. Quasi-projection operators

Let Q be the quasi-projection operator given in (1.1)Qf = ¢ for all ¢ € I1;_1, then
® = {¢q, ..., ¢y} satisfies the Strang—Fix conditions of orttdsee[24]). Conversely, if
® = {¢q, ..., ¢y} satisfies the Strang—Fix conditions of orégthen there exist compactly
supported functiong, . .., y in L5(R*) (1/p + 1/p = 1) such that the corresponding
quasi-projection operator has the property t9at = ¢ for all ¢ € I1;_1. See[14] for a
recent survey on Strang—Fix conditions and their applications to the study of approximation
power of refinable vectors of functions.

In order to establish estimate (1.5) we only need to deal with the casedvbensists of
only one function, since the proof for the general case will be analogous. Thus, we consider
the quasi-projection operatQrgiven by

Of = Y AfidC—d(—a), [feL®R), (3.1)

oaeZ®

where¢ is a compactly supported function in, (R*) (1< p <o0), andi) is a compactly
supported function irL. 5(R*) (1/p + 1/p = 1). It was proved 13, Lemma 3.2}that
Qg =gqforallg € IIj_1 if

D'(1— $H©0) =0 Vul <k

Where<?) and¢ denote the Fourier transforms ¢fand¢, respectively.
In what follows we shall us€ to denote a positive constant independent,df andp,
whose value may vary from time to time.

Theorem 3.1. Suppos®©< j < k and¢ is a compactly supported functionWiI*f(RS). Let
Q be the quasi-projection operator given(@.1),and letQ,, := ¢, Qo1 for h > 0. If
Qg =g forall ¢ € IIx_1, then

|f = Qnfljp<CH | flep V[ eWHR). (3.2)

Proof. Letv be a multi-index withv| = j. In order to estimate{ D" (f — Q, /)| ,, we use
the following decomposition:
D"(f — Qnf)=D"(f — Anf) + D"(Anf — QnAnf)
+D"(QnALf — Onf), (3.3)

whereA;, = Ay, ; is the linear operator oh ,(R") given by (2.1).
The first term on the right-hand side of (3.3) can be easily estimated by noting that
DY (A, f) = Ap(D" f). Indeed, by Lemma 2.1 we have

|D"(f = AP, = D" f =AD" )], SCH* | fla
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In order to estimate the third term on the right-hand side of (3.3), we introduce the linear
operatorQ"" defined by

QW f = (f ¢ —0)D"P(-—w), feLyR). (3.4)

oaeZ®

Forh > 0, let Q,ﬂ") = 0,0y Itis easily seen thaD"(Qy f) = h™/ Qﬁlv)f. Hence,
by Lemma 2.1 we have

|D*QnAnf = 0D, =0 Anf = P, < TICVNIALS = f,p
< CH | flip

It remains to estimat¢D” (A, f — QnAnf)llp. Let fi, == A, f andg, = Oy fi. For
oe 2% letGyy = (o+ (—1,1)")h. We shall estimateD” (f, — gn)(x)| forx € G 5. Let
g be the Taylor polynomial of}, of degreek — 1 aboutuiz. Write

D"(Anf — QuAnf) = D"(fu — @) + D"(q — gn).

Taylor's theorem gives the following estimate:

D" (fu = )| <CH Y " ID* filloo(Gan)  ¥x € G, (3.5)
1=k

SinceQjq = g, we have
D'(q —gn) = D"(Qnlg — ) =h 10" (q — fi)-
But

01" (g — i@ =Y g — fuhdC/h— B) D'$(x/h — ).
pez*

It follows that

0@~ ol 3 10%ocsin=p [ g = oo~ dorh - plas
pez?

Since¢ and<7) are compactly supported, there exists a positive conktanth that
$/h— B P(y/h—p) #0 = |y —x|<Kh.
By Taylor’s theorem, we get

(g — fISCH 3 1D filloo(Go + K[—h, hT) for |y —x|<Kh.
|ul=k

Moreover,

/RS W G(y/h = Bl dy = fRS 91 dy < oo.
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Hence, forx € G, , we have
|D"(q — gn)x)| SCH*IID"G1°(x/h) D ID* filloo(Gop + K[=h, hI*), (3.6)
|pl=k
where| D" ¢|° denotes the 1-periodization @' ¢|:
IDYGI°(x) := Y ID"p(x — P)l, xeR.
pez®
Combining (3.5) and (3.6) together, we obtain the following estimaterfarG, j,:
|D"(fi — gn) ()|

SCHI[L+1D"$1°(x/m)] D ID* filloo(Gai + K[—h, hT). 3.7
|ul=k

Sincef, = Ay f, it follows from (2.2) that

k
k
D fiy(x) = Z(—l)’"—l<m) / o DI = mup, o) du

m=1

Applying Hoélder’s inequality to the above integrals, we get
ID* filloo (G + K[—h, A1) <SCh™/P| D £|| (G + K'[—h., hT'),

whereK’ is a constant independentloindK’ > K. In particular, for the casg = oo, this
in connection with (3.7) gives the desired estimate:

1D (fi = gn) | oo SCH* 71 flk o0
Similarly, for the case & p < oo, we see that the estimate

|D"(fi — gn)(0)|”

SCH NP R [14 1D G/ )]” Y ID*FI5 (G + K'[—h, h]*)
|ul=k
is valid for allx € G, ;. Note that

/ h*[1+|D"$|°(x/1)]" dx
Gy.,h

= / [1+ |D"q’)|°(x)]p dx <oco YaelZ'.
(=1,1y

It follows that

1D Gi=snlp< X [ 1D = s ax
oh

acZ®

SCHHP Y S IDFFIN (G + K'[=h, h]).
|ul=k acZ*®
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But

S ID" FI (G + K =h Y SC [ D" F )17 d.

oaeZ®

Therefore,
D" (fi = gm) ||, SCH 1 i p-

This completes the proof of the theorem.

For the casg = 0, Theorem 3.1was already establishefdB] and[21]. In fact, in these
two papers, the functiong and¢ are only required to lie in the spage; of all functions
g with

esssup._1 1y »_ 18+ AIA+ [x + DL < oo
pez’®

Clearly, if there is some > 0 such thatg(x)| < C(1+ |x|)*=5~¢ for all x € R*, thenf
liesinL .

Kyriazis [19] investigated approximation schemes associated with a pair of Sobolev
spaces. Estimate (3.2) was established under the assumption that there exisisss@me
such that

D" p(x)]
SCA+ KD (<)) and [p)|<CA+xh ™7 Vre R

A careful examination of the proof of Theorem 3.1 reveals that estimate (3.2) is still
valid if ¢, D¢ (|v] = j), and&) lie in the spacel ;. Our proof of Theorem 3.1 was
conducted exclusively in the time domain, while the error analys{d 9% was given in
terms of the frequency domain. Each approach has its own merit. Our method can be easily
adapted to approximation associated with spaces of functions on general domains without
the shift-invariant structure.

Simultaneous approximation in derivatives was also studied by P&dBut his method
only works for local shift-invariant spaces. In other words, his method only applies to the
case whenp is compactly supported.

We are in a position to give an error estimate for the quasi-projection scheme in terms of
moduli of smoothness.

Theorem 3.2. Let ¢ be a compactly supported functionWﬁ[{(Rs), 0<j <k,andletQ
be the quasi-projection operator given(.1)with <Z> being a compactly supported function
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inL;(R*) (1/p+1/p=1).1f Qg =g forall g € Il;_1, then the following estimate
|f = Qnfljp<C Y an_j(D"f.h),
vl=j
is valid for f € W,{([RRS) inthe casel < p < oo or f € C/(R®) in the casep = oo.

Proof. Let A, = Ay, be the linear operator oh,(R") given in (2.1). In order to prove
the theorem we shall employ the decomposition given in (3.3) wijte- j. By Lemma 2.1
we have

|D*(f = anD)|, = |D"f = An(D* )] , < Can—; (D" f, ). (3.8)
p p
Moreover, applying Theorem 3.1 t, f, we obtain
| DY AR f = CrAn N, <CH 1AL flip = CH*T Y~ | DR Aw S]],
|pl=k

For each multi-indext with |u| = k, we can find a multi-index with y<u and|y| = j.
Hence, by Lemma 2.2 we have

ID*(Ay Pllp = ID*7 DY (An )l
= | D*(ARDT ), < Conj (D7 f, )/ B

This shows that

| DY AR = CrAn N, <C Y (D" £ 1), (3.9)

vI=Jj
In order to estimatg| D" (Q, A, f — Qnf)ll, we use the linear operat@) defined in
(3.4). With lev) = op Q(V)O']_/h we get
|D*QnAnf = iD= 1770 Anf = NI, <k 1Q"INARS = [llp-

This in connection with (2.4) gives

[ DY (@rAwf = 0n P, <C Y on—y (D' f. 1)y, (3.10)

[vi=Jj

The combination of (3.8)—(3.10) completes the proof of the theorem.

4. Approximation in Lipschitz spaces

In this section we study quasi-projection operators on Lipschitz spaces. In order to estab-
lish estimate (1.6) for the quasi-projection operator given in (1.1), we only need to consider
the case whe consists of only one function.
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If f e Lip(4, L,(R%)) andkis an integer greater than or equaliidhen

o (f.h)p <Ch| flLipie,)  Yh >0,
whereC is a positive constant independentdindf.
Theorem 4.1. Suppos® < t < A<k.Let¢ be acompactly supported functionWﬂ(Rs),

where j is the integer such that— 1 < 7< j. Let Q be the quasi-projection operator given
in (3.1)such thatQg = g for all ¢ € I1;_1. Then

[/ = Onfllipz.L,) <ChJV7T|f|Lip(/l,Lp) vV f elip(/, Lp). 4.1)

Proof. Suppose = r + 5, wherer is an integer and & n<1. Thenj = r + 1. In order
to establish (4.1), it suffices to show that there exists a conStanttependent offi, y andf
such that

mili(”VyDv(f - 0nf) Hp<C|Y|nhi_r|f|Lip(l,LP) Vy e R'. (4.2)
Let us first consider the cagg| > h. Sincef € Lip(4, L), for [v] = r we haveD" f €
Lip(4 —r, L,). By Theorem 3.2 we get the following estimates:
|VyD'(f — th)||p <||pY(f - th)||p + | D"(f = Qn ) — y)||p
< Ch7"I flLip(aL,)-

But A%~ = hh*=r=1<|y|"h*~ for |y| > h. Hence, (4.2) is valid for this case.
Next, let us deal with the casg| < & andA > j. Supposév| = r = j — 1. We observe
that

1
VyD'(f = Onf)(x) = /0 DyD"(f — OQnf)(x —ty)dt, xeR'.
Applying the Minkowski inequality to the above integral, we obtain

VD (f = Ow ||, <CIVILf = O fljps

whereC is a constant independentiofindy. This in connection with Theorem 3.2 gives
|9, D"(f = Qu D], SCIYIF* 1 flLip(. L,y CIYITH 71 lLip(a L,

thereby verifying (4.2) for the case> ;.
Finally, let us investigate the capd < h andA< j. For this case, we write
VyD'(f = Qnf)=VyD"(f — fu) + VyD"(fn — On fn)
+Vy DY (Qnfn — Onf), (4.3)
wherefj, := Ap, f with A;, := Ay, ;, being the linear operator given in (2.1).
For the first term on the right-hand side of (4.3) we have
VyD'(f = fu)(x) = V(D" f — Ap(D" ))(x)

=/ VAV DY f ()W, () du,  x € RS.
R.V
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Applying the Minkowski inequality to the above integral, we obtain
[0 (r = gl < [ 959,07 £ Wt d
< 2k HvyD"prfRS W ()| du.
Sincef € Lip(4, L), we have Df e Lip(4A —r, L,), and hence
1V, D" Fllp CIY 1 FlLipeint)
for some constant independent ofi, y andf. Therefore,
[V, D7 (f = fill, <CII "1 f ipGioL,y S CIY PR flLipGiL,)- (4.4)
For the second term on the right-hand side of (4.3), by (2.3) we have
IVyD"(fu = Onfid |, <[ Dy D (fir = Qufi) |, <CIYIIfu — O filp-
Theorem 3.1 tells us
| fin = Qi Sl j.p SCH* | fuli -
But f e Lip(4, L) implies |fh|k,,,<Ch}~|f|up(“p)/h", by Lemma 2.2. Consequently,
[V, D" (fu = Qnfid |, <CIY I 1 fllipez,y SCIYITR "I flipie,y. (45)
For the third term on the right-hand side of (4.3) we have

VD (Qnfi = Qu P, <IVNCH(S = fi)lj.p-

For || = j, recall that DX 0, (f — fi) = h=1 O\ (f — fi), where 0 = 6,0W a1,
with QW being the linear operator defined in (3.4). Hence,

10n(f = f)ljp = Y DO = fid |, <h ™ Y QWIS = fullp-

lul=j lul=j
But f e Lip(4, L) implies| f — fill, gCh*|f|Lip(Mp), by Lemma 2.1. Consequently,
[V, 0" fi = O O, <CIS I | FlLipeaz,y S ClyITH* (4.6)

Combining estimates (4.4), (4.5), and (4.6) together, we obtain the desired result (4.2) for
the casey| < h and1< j. The proof of the theorem is complete. ]

In [19] Kyriazis investigated quasi-projection schemes for pairs of Triebel-Lizorkin
spaces. But the cage= oo was excluded in his study.
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5. Approximation under isotropic scaling

Now let us discuss approximation with shift-invariant spaces scaled by an expansive
matrix. LetM be ans x s integer matrix with,, . .., &, being its eigenvalues. |E;| > 1
forall j =1,...,s, thenMis said to beexpansive. We say thitis isotropicif M is similar
to the diagonal matrix dia,, . .., &) with |&] = --- = |&|. Letm := | detM]|. Then
m = |&1--- &|. In particular, ifM is isotropic, thené;| = - - - = |&;| = m1/%. Refinement
equations associated with expansive matrices play a vital role in wavelet analysis.

SupposeM is an isotropic expansive matrix. Lét = {¢4, ..., ¢} be a finite set of
compactly supported functions in, (R*), and letS := S(®) N L,(R*) (1< p<o0). For
n=01,..,letS, :={g(M"-): g € S}. Then(S,),=0.1.... is a family of shift-invariant
spaces scaled by powers of matkix We are interested in the approximation properties of
(Sn)n=o0.1....- Again, quasi-projection operators induce good approximation schemes.

Forn =0,1, ... let Q, be the linear operator ah, (R*) given by

N
Onf =) D (fim"dp;(M"- =) $p;(M"- —2), [ eLpR),

j=laecZ’

where¢,, ..., ¢, are compactly supported functions Iy (R®) (1/p + 1/p = 1). In
particular,Qg is the quasi-projection operat@rgiven in (1.1).

Theorem 5.1. Supposeq, . .., ¢, are compactly supported functionsﬁﬂ,{(RS), where
0<j < k.If Qg =g forall g € II;_4, then the following estimate

|f - an|],p<C Z wkfj(va, m—n/s)p

vi=Jj

is valid for f € W,’;(RS) in the casel<p < oo or f € C/(R®) in the casep = oo.
Furthermore supposd® <t < A<kandj — 1 < 1< j.If Qg =g forall ¢ € II;_1, then

|f = OnflLipe.L,) SCOn ™'Y | flLipzr) Y f € LiD(A, Ly).

This theorem can be proved by following the procedure of the proofs of Theorems 3.1,
3.2,and 4.1. It is not necessary to repeat the details.
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